Repozytorium

Non-Destructive Determination of Starch Gelatinization, Head Rice Yield, and Aroma Components in Parboiled Rice by Raman and NIR Spectroscopy

Autorzy

Ebrahim Taghinezhad

Antoni Szumny

Adam Figiel

Ehsan Sheidaee

Sylwester Mazurek

Meysam Latifi-Amoghin

Hossein Bagherpour

Natalia Pachura

José Blasco

Rok wydania

2025

Czasopismo

Molecules

Numer woluminu

30

Strony

2938/1-2938/21

DOI

10.3390/molecules30142938

Kolekcja

Naukowa

Język

Angielski

Typ publikacji

Artykuł

Streszczenie

Vibrational spectroscopy, including Raman and near-infrared techniques, enables the non-destructive evaluation of starch gelatinization, head rice yield, and aroma-active volatile compounds in parboiled rice subjected to varying soaking and drying conditions. Raman and NIR spectra were collected for rice samples processed under different conditions and integrated with reference analyses to develop and validate partial least squares regression and artificial neural network models. The optimized PLSR model demonstrated strong predictive performance, with R2 values of 0.9406 and 0.9365 for SG and HRY, respectively, and residual predictive deviations of 3.98 and 3.75 using Raman effective wavelengths. ANN models reached R2 values of 0.97 for both SG and HRY, with RPDs exceeding 4.2 using NIR effective wavelengths. In the aroma compound analysis, p-Cymene exhibited the highest predictive accuracy, with R2 values of 0.9916 for calibration, and 0.9814 for cross-validation. Other volatiles, such as 1-Octen-3-ol, nonanal, benzaldehyde, and limonene, demonstrated high predictive reliability (R2 ≥ 0.93; RPD > 3.0). Conversely, farnesene, menthol, and menthone showed poor predictability (R2 < 0.15; RPD < 0.4). Principal component analysis revealed that the first principal component explained 90% of the total variance in the Raman dataset and 71% in the NIR dataset. Hotelling’s T2 analysis identifies influential outliers and enhances model robustness. Optimal processing conditions for achieving maximum HRY and SG values were determined at 65 °C soaking for 180 min, followed by drying at 70 °C. This study underscores the potential of integrating vibrational spectroscopy with machine learning techniques and targeted wavelength selection for the high-throughput, accurate, and scalable quality evaluation of parboiled rice.

Słowa kluczowe

parboiled rice, Raman spectroscopy, starch gelatinization, head rice yield, aroma components

Licencja otwartego dostępu

CC-BY

Licencja na prawach której można swobodnie kopiować, rozprowadzać, zmieniać i remiksować objęty prawem autorskim utwór (Utwór-przedmiot prawa autorskiego) pod warunkiem podania imienia i nazwiska autora utworu pierwotnego oraz źródła pochodzenia utworu.

Pełny tekst licencji: https://creativecommons.org/licenses/by/3.0/pl/legalcode

Adres publiczny

http://dx.doi.org/10.3390/molecules30142938

Strona internetowa wydawcy

http://www.mdpi.com/journal/metals

Podobne publikacje
2025

The Potential Application of HSI and VIS/NIR Spectroscopy for Non-Invasive Detection of Starch Gelatinization and Head Rice Yield during Parboiling and Drying Process

Taghinezhad Ebrahim, Szumny Antoni, Figiel Adam, Amoghin Meysam Latifi, Mirzazadeh Ali, Blasco José, Mazurek Sylwester, Castillo-Gironés Salvador

2013

Yarrowia lipolytica: the novel and promising 2-phenylethanol producer.

Celińska E., Kubiak P., Białas Wojciech, Dziadas Mariusz, Grajek W.