Repozytorium
Wyszukaj
Kolekcje
Inne
Exploring the Dynamical Nature of Intermolecular Hydrogen Bonds in Benzamide, Quinoline and Benzoic Acid Derivatives
Autorzy
Rok wydania
2023
Wydawca
MDPI
Miejsce wydania
Basel
Strony
199-214
DOI
10.3390/molecules27248847
Tytuł książki
Hydrogen Bonds
ISBN
978-3-0365-6771-6
Kolekcja
Język
Angielski
Typ publikacji
Rozdział książki
The hydrogen bonds properties of 2,6-difluorobenzamide, 5-hydroxyquinoline and 4-hydroxybenzoic acid were investigated by Car–Parrinello and path integral molecular dynamics (CPMD and PIMD), respectively. The computations were carried out in vacuo and in the crystalline phase. The studied complexes possess diverse networks of intermolecular hydrogen bonds (N-H…O, O-H…N and O-H…O). The time evolution of hydrogen bridges gave a deeper insight into bonds dynamics, showing that bridged protons are mostly localized on the donor side; however, the proton transfer phenomenon was registered as well. The vibrational features associated with O-H and N-H stretching were analyzed on the basis of the Fourier transform of the atomic velocity autocorrelation function. The spectroscopic effects of hydrogen bond formation were studied. The PIMD revealed quantum effects influencing the hydrogen bridges providing more accurate free energy sampling. It was found that the N…O or O…O interatomic distances decreased (reducing the length of the hydrogen bridge), while the O-H or N-H covalent bond was elongated, which led to the increase in the proton sharing. Furthermore, Quantum Theory of Atoms in Molecules (QTAIM) was used to give insight into electronic structure parameters. Finally, Symmetry-Adapted Perturbation Theory (SAPT) was employed to estimate the energy contributions to the interaction energy of the selected dimers.
Słowa kluczowe
hydrogen bond, non-covalent interactions, spectroscopic signatures, CPMD, PIMD, QTAIM, SAPT
Adres publiczny
Podobne publikacje
Exploring the Dynamical Nature of Intermolecular Hydrogen Bonds in Benzamide, Quinoline and Benzoic Acid Derivatives
Wojtkowiak Kamil, Jezierska Aneta
Chalcogen Bond as a Factor Stabilizing Ligand Conformation in the Binding Pocket of Carbonic Anhydrase IX Receptor Mimic
Wojtkowiak Kamil, Michalczyk Mariusz, Zierkiewicz Wiktor, Jezierska Aneta, Panek Jarosław J.
Role of Non-Covalent Interactions in Carbonic Anhydrase I—Topiramate Complex Based on QM/MM approach
Wojtkowiak Kamil, Jezierska Aneta