Repozytorium

Singularities and scaling invariants of susceptibility in biasing field near critical point: application to uniaxial ferroelectrics.

Autorzy

Mirosław Gałązka

Przemysław Szklarz

Grażyna Bator

Piotr Zieliński

Rok wydania

2006

Czasopismo

Journal of Physics-Condensed Matter

Numer woluminu

18

Strony

7145-7153

DOI

10.1088/0953-8984/18/31/009

Kolekcja

Naukowa

Język

Angielski

Typ publikacji

Artykuł

Streszczenie

The general shape of the temperature dependence of the static susceptibility in a biasing field conjugated to the order parameter is analysed with the use of the simplest equation of state compatible with the Widom and Griffiths scaling hypothesis. The corresponding curves are demonstrated to show from two to four inflection points, from which a discontinuous inflection point is found to occur exactly at the critical point whenever the critical exponent of susceptibility differs from one: . The unique inflection point occurring below the temperature of the maximum of the susceptibility in the case of the classical critical exponents, i.e. in the mean field theory, is also shown to be strictly independent of the biasing field. New scaling invariants related to the inflection points are found and their analytical expressions are given for the considered equation of state. The usefulness of the theoretical results to the analysis of experimental data is discussed

Adres publiczny

https://doi.org/10.1088/0953-8984/18/31/009

Strona internetowa wydawcy

https://ioppublishing.org/

Podobne publikacje